
ZTE COMMUNICATIONS
June 2024 Vol. 22 No. 2

MA Qianli, ZHANG Shengli, WANG Taotao, YANG Qing, WANG Jigang

Optimization of High-Concurrency Conflict Issues in Execute-Order-Validate Blockchain Special Topic

Optimization of HighOptimization of High--Concurrency Concurrency
Conflict Issues in ExecuteConflict Issues in Execute--OrderOrder--Validate Validate
BlockchainBlockchain

MA Qianli1, ZHANG Shengli1, WANG Taotao1,

YANG Qing1, WANG Jigang2

(1. Shenzhen University, Shenzhen 518000, China；
 2. ZTE Corporation, Shenzhen 518057, China)

DOI: 10.12142/ZTECOM.202402004

https://kns.cnki.net/kcms/detail/34.1294.TN.20240621.1419.006.html,
published online June 21, 2024

Manuscript received: 2024-03-23

Abstract: With the maturation and advancement of blockchain technology, a novel execute-order-validate (EOV) architecture has been pro⁃
posed, allowing transactions to be executed in parallel during the execution phase. However, parallel execution may lead to multi-version con⁃
currency control (MVCC) conflicts during the validation phase, resulting in transaction invalidation. Based on different causes, we categorize
conflicts in the EOV blockchain into two types: within-block conflicts and cross-block conflicts, and propose an optimization solution called
FabricMan based on Fabric v2.4. For within-block conflicts, a reordering algorithm is designed to improve the transaction success rate and
parallel validation is implemented based on the transaction conflict graph. We also merge transfer transactions to prevent triggering multiple
version checks. For cross-block conflicts, a cache-based version validation mechanism is implemented to detect and terminate invalid trans⁃
actions in advance. Experimental comparisons are conducted between FabricMan and two other systems, Fabric and Fabric++. The results
show that FabricMan outperforms the other two systems in terms of throughput, transaction abort rate, algorithm execution time, and other ex⁃
perimental metrics.
Keywords: blockchain; MVCC conflict; reordering; parallel validation; transaction merging

Citation (Format 1): MA Q L, ZHANG S L, WANG T T, et al. Optimization of high-concurrency conflict issues in execute-order-validate block⁃
chain [J]. ZTE Communications, 2024, 22(2): 19–29. DOI: 10.12142/ZTECOM.202402004
Citation (Format 2): Q. L. Ma, S. L. Zhang, T. T. Wang, et al., “Optimization of high-concurrency conflict issues in execute-order-validate
blockchain,” ZTE Communications, vol. 22, no. 2, pp. 19–29, Jun. 2024. doi: 10.12142/ZTECOM.202402004.

1 Introduction

Blockchain is essentially a form of distributed ledger
technology, and the popularity of blockchain technology
began with the emergence of Bitcoin[1] . The true reason
for this popularity is that blockchain enables peer-to-

peer transactions without the need for a trusted third party. With
the advent of smart contracts in Ethereum[2], blockchain technol⁃
ogy has been extensively researched and applied in various
fields such as finance[3], healthcare[4–5], supply chain[6], and the
Internet of Things[7], leveraging its characteristics of decentral⁃
ization, immutability, and traceability.

From the perspective of participants, blockchain systems can
be divided into permissioned chains and permissionless chains.
Permissionless chains, also known as public chains, allow any
node to anonymously participate. Due to the unknown identities
of the nodes and mutual distrust, such blockchain systems often
use proof of work or other consensus mechanisms to solve the
Byzantine fault tolerance consensus problem[8]. On the other
hand, permissioned chains consist of a group of identity-verified

nodes. These systems are often only applied to specific sce⁃
narios where the nodes, although not entirely trusting each
other, share common goals. Permissioned chains constrain par⁃
ticipating nodes and can control the read and write permissions
of different nodes, making them more suitable for enterprise-
level applications.

However, whether they are permissionless chains like Bitcoin
and Ethereum, or permissioned chains like Tendermint and
Quorum, most mainstream blockchain systems use active repli⁃
cation[9]: First, transactions are sorted through consensus proto⁃
cols or atomic broadcast and packaged into blocks for dissemi⁃
nation to nodes; then all nodes execute transactions in se⁃
quence, changing their ledger states. We call this system the
order-execute (OE) architecture, and its limitation lies in the
fact that all nodes must execute all transactions serially in or⁃
der, which is undoubtedly a limitation on throughput. In order to
achieve better parallelism in transaction execution, a new
execute-order-validate (EOV) architecture has been proposed.
In an EOV system, clients send transaction proposals to mul⁃
tiple nodes for endorsement during the execution phase. The en⁃

19

ZTE COMMUNICATIONS
June 2024 Vol. 22 No. 2

MA Qianli, ZHANG Shengli, WANG Taotao, YANG Qing, WANG Jigang

Special Topic Optimization of High-Concurrency Conflict Issues in Execute-Order-Validate Blockchain

dorsers are only a subset of the nodes in the blockchain net⁃
work, and different endorsers can endorse different transactions
at the same time, enabling the system to execute transactions in
parallel. After collecting a sufficient number of endorsements,
the client packages all response into a transaction and send it to
orderers for block creation. Finally, the orderers send the blocks
to all the nodes for validation and synchronization of ledger
states. This model utilizes optimistic concurrency control tech⁃
niques to ensure the consistency of data. However, it may lead
to multi-version concurrency control (MVCC)[10] conflicts during
the validation phase.

We categorize conflicts in EOV systems into two types:
within-block conflicts and cross-block conflicts. Within-block
conflicts occur within the same block, where the write set modi⁃
fications of transactions alter the version numbers of read sets
for later-executed transactions, resulting in the invalidation of
the latter transactions during the validation phase. Cross-block
conflicts occur when the value read by a transaction during the
execution phase is invalidated before reaching the validation
phase due to modifications made by the submission of other
blocks. SHARMA et al.[11] proposed a system called Fabric++ to
address within-block conflicts by reordering transactions. How⁃
ever, our testing showed that Fabric++ is inefficient when the
transaction conflict rate is high. To address this issue, we made
several optimizations to the EOV blockchain based on Fabric
v2.4, naming FabricMan. The main contributions of this paper
are as follows:

1) We design a reordering algorithm with stable time com⁃
plexity to reduce within-block conflicts. Experimental results
show that our algorithm performs better under high transaction
conflict rates compared with Fabric++.

2) Based on the transaction conflict graph generated during
reordering, we perform parallel validation of unrelated transac⁃
tions in the validation phase to leverage the advantages of multi-
core CPUs.

3) At the chaincode level, we analyze transactions and merge
simple transfer transactions to maximize the validation pass rate.

4) We implement a cache-based version validation mecha⁃
nism to detect and terminate invalid transactions during the or⁃
dering phase, reducing cross-block conflicts.

The rest of the paper is organized as follows: Section 2 intro⁃
duces the structures of Fabric and Fabric++, as well as other re⁃
lated research. Section 3 provides a theoretical analysis of the
problems in Fabric and proposes our findings. Section 4 de⁃
scribes the design of FabricMan. Section 5 presents experimen⁃
tal tests of FabricMan’s optimizations and compares them with
Fabric and Fabric++. Finally, Section 6 concludes our work.
2 Background and Related Work

2.1 EOV Architecture in Hyperledger Fabric
One of the representative blockchain platforms based on the

EOV architecture is Hyperledger Fabric[12], abbreviated as Fab⁃

ric. All nodes in Fabric are known and authorized at all times
and are mainly divided into three types: 1) Clients are respon⁃
sible for submitting transaction proposals and collecting en⁃
dorsement responses; 2) peers are responsible for executing and
validating transaction proposals, and then committing their write
sets to maintaining local ledgers; 3) orderers are responsible for
ordering transactions and packaging them into blocks according
to predefined rules. The workflow of a transaction consists of
three phases: execution, ordering, and validation.

1) Execution phase
During the execution phase, clients send the transaction pro⁃

posal to a subset of peers (endorsers), according to a predefined
policy. Endorsers simulate the execution of transactions in par⁃
allel based on the current ledger state, generating the corre⁃
sponding read and write sets. The read set consists of (key, ver)
tuples, and the write set consists of (key, val) tuples, where key
is a unique name representing the entry, and ver and val are
the latest version number and value of the entity, respectively.
After execution, endorsers return the read and write set with
their signatures to the client. When a client collects sufficient
responses from different endorsers, it can package them into a
transaction and send them to the ordering service to enter the
next phase.

2) Ordering phase
During the ordering phase, different orderers continuously re⁃

ceive transactions from different clients. The ordering service
needs to achieve two goals: a) reaching a consensus on transac⁃
tion orders, and b) packaging ordered transactions into blocks
according to rules and delivering them to all peers. In Fabric
v2.4, the Raft protocol is used for achieving crash-fault-tolerant
consensus in a). The block creation rules in b) are generally
formed by the maximum block interval and the maximum num⁃
ber of transactions included in a block.

3) Validation phase
When a node receives a block from the orderers, it first

checks for the presence of signatures and the legality of the
block structure. If the check passes, the block is added to a vali⁃
dation queue to ensure it can be added to the blockchain. Then,
it goes through the validating state-based endorsement check
(VSCC) and MVCC validation stages. In the VSCC stage, the
node checks if each transaction in the block meets the specific
endorsement policy of the chaincode; if not, the transaction is
marked as invalid but remains in the block. In the MVCC stage,
all transactions are sequentially checked for multi-version con⁃
currency control. If the version number of a key in the transac⁃
tion’s read set does not match the version number in the cur⁃
rent local state, the transaction is marked as invalid. Finally, the
node writes the block into its local ledger and modifies the led⁃
ger state according to the validity of each transaction.
2.2 Optimization of Fabric++

The vanilla Fabric sorts transactions based on the order in
which they arrive at the orderers. While this approach allows for

20

ZTE COMMUNICATIONS
June 2024 Vol. 22 No. 2

MA Qianli, ZHANG Shengli, WANG Taotao, YANG Qing, WANG Jigang

Optimization of High-Concurrency Conflict Issues in Execute-Order-Validate Blockchain Special Topic

quick ordering, it may lead to unnecessary serialization con⁃
flicts. To address the aforementioned issue, SHARMA et al. [11]
introduced a reordering algorithm in the ordering phase of Fab⁃
ric. This algorithm terminates a small number of transactions
based on the relationship between the read and write sets of
transactions. Subsequently, it constructs a conflict-free ordering
for the remaining transactions, thereby increasing the success
rate of transactions within a block. The algorithm consists of five
main steps as follows. 1) A conflict graph is built based on the
read and write sets of all transactions to be sorted. 2) Tarjan’s
algorithm[13] is used to identify all strongly connected subgraphs
and Johnson’s algorithm[14] to identify all cycles within these
subgraphs. 3) The cycles each transaction is part of are ideni⁃
fied, and the times of each transaction appearing in the cycles
are counted. 4) The transactions that appear in the most cycles
are sequentially terminated until the conflict graph has no
cycles. 5) Finally, a serializable scheduling scheme is estab⁃
lished using the remaining transactions.
2.3 Related Work

Currently, optimizations for the EOV blockchain can be
broadly categorized into two types:

1) Improving the overall throughput of the system
THAKKAR et al. [15] conducted comprehensive tests on the

performance of Fabric v1.0 by configuring parameters such as
the block size (BS), endorsement policy, channel, resource al⁃
location, and ledger database. They identified three main per⁃
formance bottlenecks: endorsement policy validation, valida⁃
tion of the order of transactions in a block, and validation and
submission of states in CouchDB. They proposed simple opti⁃
mizations to address the following issues: a) using a hash map
with serialized identities as keys to cache deserialized identi⁃
ties, reducing resource consumption for encryption opera⁃
tions; b) parallel validation of endorsements for multiple
transactions to utilize idle CPU resources and improve overall
performance; c) batch read and write optimization for
CouchDB. These optimizations effectively increase the overall
throughput of the system. GORENFLO et al. [16] reengineered
Hyperledger Fabric v1.2 by a) passing only transaction IDs
instead of entire transactions during ordering, b) actively
caching unassembled blocks in committers, parallelizing as
many verification steps as possible, c) redesigning the data
management layer using an in-memory database instead of
the original data storage, and d) separating roles responsible
for endorsement and submission. These changes reduce com⁃
putational and I/O overhead during transaction ordering and
validation, increasing transaction throughput from 3 000
transactions per second (TPS) to 20 000 TPS.

2) Reducing read/write conflicts caused by parallel execution
RUAN et al. [17] studied the Fabric++ solution and found that

it did not consider dependencies between transactions across
blocks, limiting the effectiveness of reordering. They proposed a
reordering algorithm based on a more granular concurrency con⁃

trol strategy and verified its safety, resulting in improved reor⁃
dering effectiveness. SUN et al.[18] analyzed the reordering algo⁃
rithm implemented in Fabric++ and found issues regarding
trust. They proposed a trusted reordering algorithm grounded in
a greedy approach.
3 Problem Analysis

As mentioned in Section 2, Fabric generates read and write
sets for transactions while execution. During the validation
phase, nodes perform MVCC validation on the read sets based
on the current state of the local database. If the versions do not
match, the transaction is marked as invalid, and its write set
cannot be used to update the ledger state, resulting in an MVCC
conflict. To assess the impact of these conflicts on the system,
we conducted tests on Fabric using the SmallBank smart con⁃
tract under the configuration described in Section 5, as shown in
Fig. 1.

In our experiments, each block contains 256 transactions.
When the total number of accounts is 3 000, the conflict rate is
relatively low, resulting in a high TPS for successful transac⁃
tions, accounting for approximately 90%. However, as the num⁃
ber of accounts decreases, the conflict rate within blocks in⁃
creases, resulting in a higher rate of transaction abortions.
When the total number of accounts is 500, the TPS for success⁃
ful transactions drops to only 30%. This demonstrates a signifi⁃
cant performance decrease when the number of transaction con⁃
flicts within blocks increases.

In high-concurrency execution environments, we classify
MVCC conflicts in the EOV blockchain into within-block and
cross-block conflicts.
3.1 Within-Block Conflicts

Within-block conflicts occur when there are conflicts be⁃
tween different transactions within the same block. When mul⁃

▲Figure 1. Transaction throughput of Fabric

Number of accounts
3 000 2 500 2 000 1 500 1 000 500

Effective Abort

Tra
nsa

ctio
n th

rou
ghp

ut/T
PS

250

200

150

100

50

0

21

ZTE COMMUNICATIONS
June 2024 Vol. 22 No. 2

MA Qianli, ZHANG Shengli, WANG Taotao, YANG Qing, WANG Jigang

Special Topic Optimization of High-Concurrency Conflict Issues in Execute-Order-Validate Blockchain

tiple transactions that read or write the same key are grouped
into the same block, it may lead to this type of conflict. In the
example provided in Table 1, transactions T1 and T2 are sequen⁃
tially packaged into a single block. During the validation phase,
T1 updates key k1, changing its version number to v1. Next, T2 is
validated, and its read set includes key k1 with version v0. Dur⁃
ing the MVCC validation, it is discovered that v0 ≠ v1, resulting
in T2 being marked as invalid.

Observation 1: It is possible to reduce the number of conflicts
within a block by modifying the validation order of transactions.
The fundamental reason for within-block conflicts is that two dif⁃
ferent transactions perform a write-followed-by-read operation
on the same key. By adjusting the order of transactions, we can
ensure that they perform read operations before write opera⁃
tions. In the given example, if T2 is validated before T1, there
would be no conflict.

As mentioned in Section 2.2, Fabric++ uses Johnson’s algo⁃
rithm during reordering, with a time complexity of O ((n +
e) (c + 1)), where n is the number of nodes, e is the number of
edges, and c is the number of cycles in the graph. While the
number of nodes and edges in the conflict graph can be con⁃
trolled to small values, the number of cycles may be very large.
Ref. [19] highlighted a similar issue: when resolving cycles in
Fabric++ , recalculating the occurrence count of individual
transactions in a cycle results in a time complexity of O (n3) for
the entire algorithm. Considering that topological sorting is an
algorithm for ordering graph vertices with a stable time complex⁃
ity of O (n + e), we can propose a new reordering algorithm
based on it. This algorithm can rapidly complete reordering
even when transaction conflict rates are high.

Observation 2: The conflict graph generated by reordering
can reflect dependency information between transactions, which
can be utilized for parallel validation. In the Fabric, validation
can be divided into two main stages: VSCC and MVCC. VSCC
is used to evaluate whether endorsements in transactions com⁃
ply with the endorsement policy, and this step is already paral⁃
lelized in the system. MVCC, on the other hand, is executed se⁃
quentially. Ref. [15] pointed out that one of the performance
bottlenecks of Fabric is the serial MVCC validation of all trans⁃
actions within a block. If we parallelize the validation of unre⁃
lated transactions by leveraging transaction dependency rela⁃
tionships, we can fully harness the advantages of multi-core
CPUs to enhance system performance.

Observation 3: Transfers are one of the primary transaction
types, characterized by simple logic and fixed parameters, ren⁃
dering them suitable for merging. As a permissioned block⁃
chain, obtaining block data from Fabric is challenging. Ref. [20]
analyzed transactions on Ethereum over a period of time and
found that the main types of transactions leading to conflicts are
ERC20 token transactions accounting for 60%, decentralized fi⁃
nance (DeFi) transactions accounting for 29%, and gaming
transactions accounting for 10%. Therefore, we believe that the
merging of transfer transactions holds significance.

3.2 Cross-Block Conflicts
Due to the nature of the EOV structure, there is a certain de⁃

lay between the execution and verification. If a transaction in a
later block reads a key that was written by a transaction in an
earlier block before the earlier block’s verification, it can result
in a dirty read in the later block, leading to a conflict. As shown
in Fig. 2, T1 and T2 are two transactions in different blocks. Dur⁃
ing the execution phase, T1 reads the current version number v0 of key k1. From the verification phase, it can be seen that T1 modifies key k1 in its write set, but since this step is a simulated
execution, the database state is not altered. Therefore, T2 still
reads version v0 of k1. Subsequently, the block containing T1 en⁃
ters the verification phase and updates the version number of
key k1 to v1, resulting in T2 invalidated. Additionally, under spe⁃
cial circumstances such as network congestion, cross-block con⁃
flicts can also occur.

Observation 4: Orderers have the opportunity to early abort
invalid transactions caused by cross-block conflicts. All transac⁃
tions arrive at the orderer for block generation. Since the version
numbers of keys in the read sets are obtained from the ledger
during execution, the version of a key in the ledger at this point
must be no lower than the version in the read set. We can utilize
a caching mechanism to store versions of keys, thereby filtering
out invalid transactions.
4 Design of FabricMan

In the previous section, we have analyzed two types of con⁃
flicts in the EOV blockchain and identified four directions for
optimization. In this section, we will first introduce our modifica⁃
tions to the ordering phase and then discuss the four modular
designs for each direction: transaction reordering, parallel verifi⁃
cation, transaction merging, and caching mechanism.

▼Table 1. An example of within-block conflict
Order

1
2

Transaction
T1
T2

Read Set
-

(k1, v0), (k2, v0)

Write Set
(k1, v0→v1)
(k2, v0→v1)

Validity
Valid

Invalid

▲Figure 2. An example of cross-block conflict

Ledger state
Read k1v0

T1

T2

Read k1v0

Execution phase

Ordering phase

Validation phase Update k1v1

v0≠ v1

Execution phase

Ordering phase

Validation phase

22

ZTE COMMUNICATIONS
June 2024 Vol. 22 No. 2

MA Qianli, ZHANG Shengli, WANG Taotao, YANG Qing, WANG Jigang

Optimization of High-Concurrency Conflict Issues in Execute-Order-Validate Blockchain Special Topic

Our optimization efforts primarily focus on the ordering
phase. The orderer receives transactions from multiple clients
and merges them into a batch until the conditions for block gen⁃
eration are fulfilled. The conditions consist of two parts: When
the number of transactions in the batch reaches a predefined
threshold, and then when the time taken to construct the batch
reaches the maximum block generation time limit.

Once either condition is met, our system starts processing the
batch. All transactions are first filtered through a version cache
maintained by the orderers. During this process, the system ex⁃
tracts the read sets of transactions and compares them with the
cache. Transactions that do not meet the filtering criteria are
aborted and feedbacks are provided to the clients. Transactions
are then checked to determine if they are transfer transactions.
If so, they are moved to the transfer array and merged with other
transfer transactions. The remaining transactions in the batch
are non-transfer transactions that undergo reordering and subdi⁃
vision into subgraphs based on dependency relationships. Fi⁃
nally, the system constructs a new block by incorporating
merger transactions, transfer transactions, and the reordered
batch. It then adds the transaction subgraphs to the block
header and distributes the block to all peers.
4.1 Transaction Reordering

When reordering a transaction set S, it is necessary to iden⁃
tify the dependencies between the transactions to construct a
transaction conflict graph. In the graph, if a transaction Ti points
to another transaction Tj, it means that the write set of Ti inter⁃
sects with the read set of Tj, denoted as Ti → Tj. This indicates
that during block ordering, Tj needs to precede Ti, otherwise Tj will be invalidated due to reading outdated versions. When con⁃
structing the conflict graph, each node represents a transaction.
According to the aforementioned definition, the out-degree of a
node indicates the number of other transactions whose validity it
affects, while the in-degree indicates the number of other trans⁃
actions that affect it. Additionally, an important issue to address
is the presence of cycles in the graph. Circular graphs cannot be
serialized, thus necessitating the use of algorithms to remove
certain transactions and convert the original conflict graph into
an acyclic graph.

Our algorithm is based on topological sorting, but due to the
unsuitability of topological sorting for cyclic graphs, we make
some improvements. From a high-level perspective, it mainly
consists of five steps as follows. 1) The conflict graph is con⁃
structed based on the read-write sets of each transaction in S,
and the in-degree and out-degree of each node are recorded. 2)
A node n with the minimum in-degree is selected for process⁃
ing. If multiple nodes meet this criterion, the one with the maxi⁃
mum out-degree is prioritized. If there are still multiple options,
the one with the smallest index is chosen. 3) Other nodes point⁃
ing to n from the graph are removed until the in-degree of n is 0.
4) N is added to the result queue and removed from the graph.
5) Steps 2), 3), and 4) are repeated until there are no remaining

nodes in the conflict graph. Finally, the result queue is reversed
to obtain a conflict-free serialized ordering. The pseudo-code of
Algorithm 1 implements these five steps.

Note that in Step 2), since we need to reduce the in-degree
of n to 0, we prioritize selecting the node with the minimum in-
degree to retain more transactions. Furthermore, since the out-
degree of a node indicates the number of transactions it will af⁃
fect after ordering, and the final ordering is the reverse of the
ordering queue, i.e., transactions that enter the ordering queue
first will be placed at later positions in the algorithm, we pri⁃
oritize selecting transactions with the maximum out-degree for
ordering.
Algorithm 1. Reordering algorithm
1. func ReorderSort(Transaction[] S) {
2. // Step 1: Construct a transaction conflict graph and
an exit and entry table
3. Graph cg = buildConflictGraph(S)
4. Graph incg = invert cg
5. map[Transaction]int indegree = Calculate in-degrees
using cg
6. map[Transaction]int outdegree = Calculate out-de⁃
grees using cg
7. // Step 2: Select nodes to be sorted
8. while S is not empty:
9. for each Transaction tx in S:
10. if indegree[tx] < minIndegree:
11. min = indegree[tx]
12. nodeToSort = node
13. else if indegree[tx] == min and outdegree
[tx] > outdegree[nodeToSort]:
14. nodeToSort = node
15. // Step 3: Process nodeToSort so that their degree
is 0
16. for each nodeToRemove in incg[nodeToSort]:
17. if nodeToRemove not in S:
18. continue
19. remove nodeToRemove from S
20. for each tx in cg[nodeToRemove]:
21. indegree[tx]--
22. for each tx in incg[nodeToRemove]:
23. outdegree[tx]--
24. // Step 4: Add nodeToSort to the queue and re⁃
move from transaction graph
25. append nodeToSort to result
26. for each tx in cg[nodeToSort]:
27. indegree[tx]--
28. remove nodeToSort from S
29. // Step 5: Return the reverse order of the ordering
queue to obtain the ordering result
30. return result.invert()
31. }

Here is an example to better understand the algorithm. We

23

ZTE COMMUNICATIONS
June 2024 Vol. 22 No. 2

MA Qianli, ZHANG Shengli, WANG Taotao, YANG Qing, WANG Jigang

Special Topic Optimization of High-Concurrency Conflict Issues in Execute-Order-Validate Blockchain

assume there are six transactions, T0 to T5, within a set S, and
their read-write sets are as shown in Table 2. These six transac⁃
tions access 10 different keys, k0 to k9, and 0 indicates that a
transaction’s read or write set does not contain a certain key,
while 1 indicates that it does. The reordering process is as fol⁃
lows:

1) The first step is constructing a conflict graph for transac⁃
tions in S based on the read-write sets, as shown in Fig. 3. If Ti points to Tj, it indicates that the write set of Ti shares common
keys with the read set of Tj. At this point, the in-degree and out-
degree of each node are shown in Table 3.

2) In the first iteration, following step 2, the system selects T5 as n because it currently has the smallest in-degree among the
transactions in S. As the in-degree of T5 is 0, Step 3 is skipped.
Next, the system adds T5 to the result, removes it from S, and
then decrements the in-degree of the node pointed to by T5, which is T2.3) In the second iteration, since T0, T2 and T4 all have an in-
degree of 1, making them the nodes with the lowest in-degree,
the system selects T4 as n based on Step 2. Then, in Step 3, the
system removes the node T2 from S, reducing the in-degree of T4 to 0. In Step 4, T4 is added to the result and removed from S,
and then the in-degrees of T1 and T3 are each decreased by one.

4) At this point, there remains a cycle consisting of T0, T1 and T3 in the graph. Since their in-degree and out-degree are
the same, the system chooses T0 with the smallest index as n. It
removes T1, adds T0 to the result, and then adds T3 to the result.
Reversing the result queue, we can get the final sorted result:
T3 - T0 - T4 - T5.The central part of this reordering algorithm exhibits a time
complexity comparable to that of topological sorting, which is
O (n + e). Moreover, it is not affected by the number of cycles
in the graph, eliminating this flaw presented in the Fabric++. It
is worth noting that our algorithm does not guarantee the termi⁃

nation of the minimum number of transactions to make the
graph acyclic, as this is an NP-hard problem. We merely pro⁃
vide a very lightweight way to terminate a small number of trans⁃
actions, thereby generating a serializable ordering scheme.

Another point that needs to be clarified is that the reordering
algorithm proposed by RUAN et al.[17] resembles a greedy strat⁃
egy. The system constructs a conflict graph for all pending trans⁃
actions. When a new transaction is received, its dependencies
are added to the conflict graph. If a cycle is detected, the new
transaction is directly dropped, ensuring that transactions in the
pending queue do not have circular dependencies. In contrast,
Fabric++ and our algorithm are more modular. We construct a
conflict graph for all the transactions within a block and then
eliminate cycles, ultimately achieving a serializable ordering.
4.2 Parallel Verification

When conducting reordering, the algorithm generates a con⁃
flict graph among transactions, as indicated by lines 3 and 4 in
Algorithm 1. Here, cg represents the conflict graph, depicted by
a two-dimensional array. Each element cg[i] is a one-
dimensional array, where the presence of an element j indicates
that transaction Tj must occur before transaction Ti, namely
Ti → Tj.After reordering, the aborted transactions are removed from
the conflict graph. The system then performs a depth-first
search (DFS) operation on cg to identify their connected compo⁃
nents and further partition them into mutually disconnected sub⁃
graphs. When the block is generated, the information regarding
these subgraphs will be serialized and appended to the block
header. During the validation phase, nodes deserialize the infor⁃

▼Table 3. Initial in-degree and out-degree of the six transactions
Transaction

T0
T1
T2
T3
T4
T5

In-Degree
1
3
2
2
1
0

Out-Degree
1
1
2
1
3
1

▼Table 2. Read and write sets of the six transactions
Read Set

Tx

T0
T1
T2
T3
T4
T5

Wirte Set
Tx

T0
T1
T2
T3
T4
T5

k0
1
0
0
0
0
0

k0
0
1
0
0
0
0

k1
0
0
0
1
0
0

k1
0
0
0
1
0
0

k2
0
0
0
1
0
0

k2
1
0
0
0
0
0

k3
0
1
0
0
0
0

k3
0
0
1
0
0
0

k4
0
1
0
0
0
0

k4
0
0
0
1
0
0

k5
0
1
0
0
0
0

k5
0
0
0
0
1
0

k6
0
0
1
0
0
0

k6
0
0
0
0
1
0

k7
0
0
1
0
0
0

k7
0
0
0
0
0
1

k8
0
0
0
1
0
0

k8
0
0
0
0
1
0

k9
0
0
0
0
1
0

k9
0
0
1
0
0
0

▲ Figure 3. Initial conflict graph formed by the six transactions in a
block

T1 T2

T5

T4T3

T0

24

ZTE COMMUNICATIONS
June 2024 Vol. 22 No. 2

MA Qianli, ZHANG Shengli, WANG Taotao, YANG Qing, WANG Jigang

Optimization of High-Concurrency Conflict Issues in Execute-Order-Validate Blockchain Special Topic

mation and utilize goroutines to perform MVCC validations on
independent subgraphs in parallel.
4.3 Transaction Merging

During the execution phase, we analyze the parameters of
chaincode transactions, which allows us to identify simple trans⁃
fer transactions. Additionally, we include a value field in the
structure of the transaction’s read set to represent its initial
value.

In the ordering phase, nodes identify transfer transactions un⁃
der different chaincodes and construct a transfer table for each
chaincode. The node adds the initial balance of each account to
the Moneymap table and their corresponding version numbers to
the Versionmap table. If the sender’s balance is less than the
transfer amount, the transaction is aborted. Otherwise, the
sender’s balance is decreased by the transfer amount, and the
receiver’s balance is increased by the same amount. After pro⁃
cessing all transfer transactions, the system utilizes the keys and
corresponding version numbers in the Versionmap to form the
read set of the merger transaction. Similarly, it utilizes the keys
and values in the Moneymap to create the write set of the
merger transaction.

Once the merger transaction is constructed, it is positioned at
the start of the block during formation, followed by all the
merged transfer transactions. Retaining the merged transactions
in the block serves two purposes: First, it enables the system to
offer feedback to clients concerning the success or failure of the
merger transactions during validation; second, it maintains
transaction data on the blockchain for future auditing purposes.
4.4 Caching Mechanism

To mitigate the cross-block conflicts mentioned in Section
3.2, we deploy a cache utilizing a hash table at the orderers.
This cache is employed to store the keys and version numbers
extracted from the read and write sets of received transactions.
The cache table consists of three fields: key, version, and up⁃
dated flag. The key represents the unique entity name in the
smart contract chaincode, while the version indicates the latest
version number read for the corresponding key in the transac⁃
tion. The updated flag denotes whether the key may have been
updated by a new block.

Upon the arrival of transactions at the orderer, the read sets
of each transaction are checked against the cache. If any key is
found to have a version lower than that in the cache, the transac⁃
tion is immediately aborted. This prevents outdated transactions
from occupying system resources due to network delays. If a key
has a version greater than or not present in the cache, the cache
is updated with the latest version. If a key matches the version
in the cache, the system checks if it has the updated flag; if so,
the transaction is aborted.

After the completion of reordering, the orderer obtains a
block containing transactions with no conflicts. Under normal
operation, the write sets of this block are applied to update the

ledger. At this point, the orderer checks the read sets of each
transaction. If the cache contains keys identical to those in the
read set, the corresponding values in the cache are marked with
the updated flag, indicating that the version is no longer the lat⁃
est for that key.

However, there is a potential issue with this cache mecha⁃
nism. If transaction T1 fails to pass the final validation phase for
some unexpected reason (e.g., a signature issue), the version of
k1 in the node’s ledger remains v0. However, in the orderer, the
version of k1 has already been altered to v0 - updated, causing
subsequent transactions reading k1: v0 to fail. To address this is⁃
sue, we introduce a timer in the cache. If a key is not updated
within two block intervals, it is removed from the cache. This
also ensures that the cache does not indefinitely increase in size.
5 Experimental Evaluation

To validate the improvements proposed in this paper, we con⁃
ducted experimental evaluations of key metrics such as through⁃
put, transaction abort rate, and algorithm execution time for Fab⁃
ric, Fabric++, and FabricMan. Since the original Fabric++ code
is implemented on Fabric v1.2 while FabricMan is based on
Fabric v2.4, for comparison purposes, we also reimplemented
Fabric++ based on Fabric v2.4.
5.1 Setup and Workload

The experimental setup involves a single-channel blockchain
system comprising two organizations, each containing two peer
nodes deployed via docker containers. The consensus mecha⁃
nism used is Raft, and LevelDB serves as the state database.
The experiments were conducted on a server with a 36-core
CPU (Intel Core i9-10980XE 3.0 GHz), 256 GB RAM, running
on Ubuntu 20.04.5 LTS.

Two types of workloads were employed in the experiments:
Smallbank and custom chaincode, assessed through the caliper-
benchmarks framework. The Smallbank contract creates a
checking account and a savings account for each user and in⁃
cludes six functions. In the custom chaincode, we defined com⁃
plex read-write transactions that read the balances of four ac⁃
counts and modify two of them.

In Section 3, Smallbank is used to test Fabric for measuring
the transaction throughput under different numbers of accounts.
The transaction conflict rates corresponding to different numbers
of accounts are shown in Table 4. In subsequent experiments, we
continued to use these account numbers to measure the system’s
performance under different transaction conflict rates.
5.2 Impact of Block Size

BS is one of the important factors affecting the throughput
▼Table 4. Number of accounts and corresponding conflict rates

Number of
Accounts

Conflict rate/%
3 000
10.5

2 500
14

2 000
20.3

1 500
32.3

1 000
46.4

500
67.8

25

ZTE COMMUNICATIONS
June 2024 Vol. 22 No. 2

MA Qianli, ZHANG Shengli, WANG Taotao, YANG Qing, WANG Jigang

Special Topic Optimization of High-Concurrency Conflict Issues in Execute-Order-Validate Blockchain

and latency of a blockchain. We tested the impact of the transac⁃
tion trigger rate on FabricMan, and the impact of changing the
block size on the throughput of Fabric, Fabric++, and FabricMan.
We used the Smallbank contract and tested the performance of
the systems in a low-conflict environment when the number of ac⁃
counts was set to 3 000. The results are shown in Fig. 4.

It is found that as the transaction trigger rate increases, the
throughput of FabricMan also gradually increases, reaching
saturation at around 240 TPS when the transaction trigger rate
is 512 TPS. As the block size increases from 64 to 256, the sys⁃
tem throughput also increases, but it decreases when the block
size is set to 512. This is because increasing the number of
transactions in a block leads to more conflicting transactions, re⁃
ducing the throughput of successful transactions, and larger
blocks also increase the transmission time in the system.

We can also observe that as the number of transactions in a
block increases, the difference in throughput of successful trans⁃
actions between FabricMan and Fabric++ compared to Fabric

becomes larger. This is because as the number of transactions in
the block increases, the probability of conflicts also increases,
making the effect of reordering more pronounced. The through⁃
put of all three systems reaches its peak when the block size is
set to 256. Therefore, in subsequent experiments, we use 256 as
the number of transactions included in a block, and set the
maximum block interval to one second, and the transaction trig⁃
ger rate to 512 TPS.
5.3 Comparison of Reordering Algorithms

To evaluate the performance of the reordering algorithms,
we prepared multiple pre-packaged blocks (each containing
256 transactions) and applied the reordering algorithms of
FabricMan and Fabric++ separately. Their execution time, the
number of valid transactions in each block, and the through⁃
put of valid transactions were compared. In this experiment,
we used complex read-write transactions from custom chain⁃
code to increase the conflict rate between transactions, aiming
to better evaluate the performance of both algorithms.

We controlled the number of accounts to gradually decrease
from 1 500 to 1 000. Fig. 5 shows the time taken by both the
algorithms and the number of valid transactions within each
block. It can be observed that the time required by Fabric++
for reordering increases significantly as the conflict rate in⁃
creases, and it becomes unable to generate blocks when the
number of accounts reaches 1 000. In contrast, the algorithm
of FabricMan remains stable at around 1 500 us. However,
since FabricMan’s reordering algorithm does not select nodes
with the most cycles in each round like Fabric++ , the final
number of successful transactions is slightly lower than that in
Fabric++. Nevertheless, its stable time complexity allows it to
generate blocks normally even in high-conflict environments
with 1 000 or fewer accounts.

The comparison of throughput between the two systems is
shown in Fig. 6, where FabricMan only uses the optimization
of the reordering. It can be seen that FabricMan consistently
outperforms Fabric++ in throughput across different settings
of the number of accounts. This is because, in the range of 1
500 to 1 400 accounts, where the conflict rate is relatively
low, both reordering algorithms yield a comparable number of
valid transactions within the same block. However, Fabric⁃
Man’s reordering algorithm has shorter execution times. As
the number of accounts decreases below 1 400, the conflict
rate increases significantly. While Fabric++’s algorithm can
produce more valid transactions, the time it takes for execu⁃
tion increases significantly.
5.4 Effect of Parallel Verification

We also tested the impact of assigning different numbers of
CPU cores to FabricMan on parallel verification time. The ex⁃
tensive use of CPU resources for identity encryption and de⁃
cryption operations in permissioned blockchains could affect
our experimental results. We used multiple pre-packaged ▲ Figure 4. Impact of transaction trigger rate of FabricMan (up) and

that of block size of three systems (down)

BS: block size

Transaction trigger rate/TPS
64 128 256 512 1 024

BS=64BS=128BS=256BS=512

Tra
nsa

ctio
n th

rou
ghp

ut/T
PS

250

200

150

100

50

0

Block size (number of transactions)

Eff
ect

ive
 tra

nsa
ctio

n th
rou

ghp
ut/T

PS

250

200

150

100

50

32 64 128 256 512 1 024

FabricFabric++FabricMan

26

ZTE COMMUNICATIONS
June 2024 Vol. 22 No. 2

MA Qianli, ZHANG Shengli, WANG Taotao, YANG Qing, WANG Jigang

Optimization of High-Concurrency Conflict Issues in Execute-Order-Validate Blockchain Special Topic

blocks and conducted modular tests on MVCC verification
time with validation nodes having CPU core counts ranging

from 1 to 16.
The experiments employed the Smallbank contract and var⁃

ied the number of accounts (AC) to represent different conflict
rates. To ensure verification of the same number of transac⁃
tions at different conflict rates, we only used the subgraph par⁃
titioning algorithm instead of reordering during block genera⁃
tion. The test results, as depicted in Fig. 7, indicate a signifi⁃
cant reduction in verification time with an increase in the
number of cores used. However, beyond 8 cores, the reduction
in time becomes less pronounced, as this stage becomes bottle⁃
necked by interactions with the database and the serial verifi⁃
cation of the longest transaction conflict chain. Moreover, as
the block conflict rate increases, resulting in longer conflict
chains, the corresponding verification time also increases.
5.5 Effect of Transaction Merging

In this section, we used 1 000 accounts to send non-transfer
or transfer transactions in the Smallbank contract. Non-
transfer transactions cannot be merged, while transfer transac⁃
tions can. We gradually increased the proportion of transfer
transactions from 15% to 85%. The proportion of successful
transactions in the Fabric, Fabric++ , and FabricMan systems
is shown in Fig. 8.

When the proportion of transfer transactions is low, Fab⁃
ric++ and FabricMan have a higher successful transaction rate
due to reordering. However, as the proportion of transfer trans⁃
actions increases, the successful transaction rate in Fabric⁃
Man increases because of the transaction merging mechanism.
When the proportion of transfers reaches 85%, over 90% of
transactions in FabricMan can be successfully submitted. In
contrast, as the read-write set of transfers in Smallbank is
more complex than others, the number of MVCC conflicts in
Fabric and Fabric++ increases, leading to a decrease in the
successful transactions rate.

Number of accounts
1 500 1 400 1 300 1 200 1 100 1 000

Tim
e sp

ent
/μs

Fabric++FabricMan

12 000

10 000

8 000

6 000

4 000

2 000

0

Fabric++FabricMan

Number of accounts
1 500 1 400 1 300 1 200 1 100 1 000

Nu
mb

er o
f ef

fec
tive

 tra
nsa

ctio
ns p

er b
loc

k

250

200

150

100

50

0

▲Figure 5. Comparison of two algorithms in execution time and effec⁃
tive transaction quantity

▲Figure 6. Throughput of two systems under different account numbers ▲Figure 7. Block verification time under different numbers of CPU cores

AC: accountNumber of accounts

Fabric++FabricMan (reordering)

1 500 1 400 1 300 1 200 1 100 1 000

Eff
ect

ive
 tra

nsa
ctio

n th
rou

ghp
ut/T

PS

200

150

100

50

0
Number of CPU cores

1 2 4 8 16

Blo
ck

ver
ific

atio
n ti

me
/μs

2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6

×104

AC=3 000
AC=2 000
AC=1 5000
AC=500

27

ZTE COMMUNICATIONS
June 2024 Vol. 22 No. 2

MA Qianli, ZHANG Shengli, WANG Taotao, YANG Qing, WANG Jigang

Special Topic Optimization of High-Concurrency Conflict Issues in Execute-Order-Validate Blockchain

5.6 Combinations of Optimizations
Finally, we conducted comprehensive performance testing of

the systems. We used the Smallbank contract as the workload
and applied all optimizations mentioned in Section 4 to Fabric⁃
Man. We tested the system under different numbers of accounts
and compared the throughput and transaction abort rate with
Fabric and Fabric++, as shown in Fig. 9.

The results demonstrate that when the number of accounts is
3 000 and the transaction abort rate is low, Fabric exhibits the low⁃
est throughput among the three systems, at less than 200 TPS.
Fabric++, benefiting from reordering, achieves a slightly higher
throughput of around 215 TPS. In contrast, FabricMan, leverag⁃
ing both reordering and parallel validation along with the merg⁃
ing of transfer transactions, achieves the highest throughput of
approximately 240 TPS.

As the number of accounts gradually decreases from 3 000 to
500, resulting in an increasing transaction abort rate, Fabric ex⁃
periences a significant decline in effective transaction through⁃
put, dropping to less than half of its initial level. Meanwhile,
FabricMan experiences a slower decrease in effective transac⁃
tion throughput, with the lowest transaction abort rate. Even in
high-concurrency conflict environments, FabricMan can main⁃
tain relatively high throughput.
6 Conclusions and Future Work

We mitigate the performance impact of MVCC conflicts
arising from concurrent execution in the innovative EOV
blockchain by introducing a comprehensive blockchain archi⁃
tecture named FabricMan. This architecture addresses both
within-block and cross-block conflicts while enabling parallel
validation and transaction merging. Through testing, Fabric⁃
Man has demonstrated superior performance in terms of
throughput, transaction abort rate, and execution time com⁃
pared to the baseline schemes. However, there are several ar⁃
eas for future improvement in our work. First, the reordering

of transactions within a block may potentially compromise the
fairness of the system. In future work, we plan to analyze this
issue and introduce appropriate parameters into the algorithm
to address it. Second, our experiments were conducted using
Docker on a single server, which could not effectively simu⁃
late factors such as communication latency present in real net⁃
works. The problem of cross-block conflicts was not ad⁃
equately addressed, so it was not discussed in the experimen⁃
tal phase. In future work, deploying the system in a multi-
node environment can provide a better understanding of this
issue and facilitate further discussion.

References
[1] NAKAMOTO S. Bitcoin: a peer-to-peer electronic cash system [EB/OL].

(2008-10-31)[2024-03-15]. https://nakamotoinstitute.org/library/bitcoin
[2] BUTERIN V. A next generation smart contract & decentralized application

platform [R]. Ethereum white paper, 2014
[3] QIN K H, ZHOU L Y, GERVAIS A. Quantifying blockchain extractable

value: how dark is the forest? [C]//Proc. IEEE Symposium on Security and
Privacy (SP). IEEE, 2022: 198–214. DOI: 10.1109/SP46214.2022.9833734

Transfer transaction rate/%
15 25 35 45 55 65 75 85

Eff
ect

ive
 tra

nsa
ctio

n ra
te/%

100

90

80

70

60

50

40

FabricFabric++FabricMan

▲Figure 8. Effective transaction rates within the three systems with dif⁃
ferent transfer transaction rates

▲ Figure 9. Comparison of throughput and transaction abortion rates
of three systems

Eff
ect

ive
 tra

nsa
ctio

n th
rou

ghp
ut/T

PS 250

200

150

100

50

Number of accounts

FabricFabric++FabricMan

3 000 2 500 2 000 1 500 1 000 500

FabricFabric++FabricMan

Tra
nsa

ctio
n a

bor
t ra

te/%

Number of accounts
3 000 2 500 2 000 1 500 1 000 500

80
70
60
50
40
30
20
10

0

28

ZTE COMMUNICATIONS
June 2024 Vol. 22 No. 2

MA Qianli, ZHANG Shengli, WANG Taotao, YANG Qing, WANG Jigang

Optimization of High-Concurrency Conflict Issues in Execute-Order-Validate Blockchain Special Topic

[4] AZARIA A, EKBLAW A, VIEIRA T, et al. MedRec: using blockchain for
medical data access and permission management [C]//Proc. 2nd International
Conference on Open and Big Data (OBD). IEEE, 2016: 25 – 30. DOI:
10.1109/OBD.2016.11

[5] FAN K, WANG S Y, REN Y H, et al. MedBlock: efficient and secure medi⁃
cal data sharing via blockchain [J]. Journal of medical systems, 2018, 42(8):
136. DOI: 10.1007/s10916-018-0993-7

[6] ABEYRATNE S A, MONFARED R P. Blockchain ready manufacturing sup⁃
ply chain using distributed ledger [J]. International journal of research in en⁃
gineering and technology, 2016, 5(9): 1 – 10. DOI: 10.15623/
IJRET.2016.0509001

[7] DAI H N, ZHENG Z B, ZHANG Y. Blockchain for internet of things: a sur⁃
vey [J]. IEEE internet of things journal, 2019, 6(5): 8076 – 8094. DOI:
10.1109/JIOT.2019.2920987

[8] VUKOLIĆ M. The quest for scalable blockchain fabric: proof-of-work
vs. BFT replication [M]//Open problems in network security. Cham:
Springer International Publishing, 2016: 112–125. DOI: 10.1007/978-
3-319-39028-4_9

[9] CHARRON-BOST B, PEDONE F, SCHIPER A. Replication: theory and
practice [M]. Berlin Heidelberg: Springer, 2010

[10] PAPADIMITRIOU C H, KANELLAKIS P C. On concurrency control by
multiple versions [J]. ACM transactions on database systems, 9(1): 89–99.
DOI: 10.1145/348.318588

[11] SHARMA A, SCHUHKNECHT F M, AGRAWAL D, et al. Blurring the
lines between blockchains and database systems: the case of hyperledger
fabric [C]//Proc. 2019 International Conference on Management of Data.
ACM, 2019: 105–122. DOI: 10.1145/3299869.3319883

[12] ANDROULAKI E, BARGER A, BORTNIKOV V, et al. Hyperledger fabric:
a distributed operating system for permissioned blockchains [C]//Proc. Thir⁃
teenth EuroSys Conference. ACM, 2018: 1 – 15. DOI: 10.1145/
3190508.3190538

[13] TARJAN R. Depth-first search and linear graph algorithms [C]//Proc. 12th
Annual Symposium on Switching and Automata Theory. IEEE, 1971: 114–
121. DOI: 10.1109/SWAT.1971.10

[14] JOHNSON D B. Finding all the elementary circuits of a directed graph [J].
SIAM journal on computing, 1975, 4(1): 77–84. DOI: 10.1137/0204007

[15] THAKKAR P, NATHAN S, VISWANATHAN B. Performance bench⁃
marking and optimizing hyperledger fabric blockchain platform [C]//Proc
IEEE 26th International Symposium on Modeling, Analysis, and Simula⁃
tion of Computer and Telecommunication Systems (MASCOTS). IEEE,
2018: 264–276. DOI: 10.1109/MASCOTS.2018.00034

[16] GORENFLO C, LEE S, GOLAB L, et al. FastFabric: scaling hyperledger
fabric to 20000 transactions per second [J]. International journal of network
management, 2020, 30(5): e2099. DOI: 10.1002/nem.2099

[17] RUAN P C, LOGHIN D, TA Q T, et al. A transactional perspective on
execute-order-validate blockchains [C]//Proc. 2020 ACM SIGMOD Interna⁃
tional Conference on Management of Data. ACM, 2020: 543– 557. DOI:
10.1145/3318464.3389693

[18] SUN Q C, YUAN Y Y, GUO T, et al. A trusted solution to hyperledger fab⁃
ric reordering problem [C]//Proc. 8th International Conference on Depend⁃
able Systems and Their Applications (DSA). IEEE, 2021: 202–207. DOI:
10.1109/DSA52907.2021.00031

[19] WU H B, LIU H, LI J. FabricETP: a high-throughput blockchain optimiza⁃

tion solution for resolving concurrent conflicting transactions [J]. Peer-to-
peer networking and applications, 2023, 16(2): 858– 875. DOI: 10.1007/
s12083-022-01401-9

[20] GARAMVOLGYI P, LIU Y X, ZHOU D, et al. Utilizing parallelism in smart
contracts on decentralized blockchains by taming application-inherent con⁃
flicts [C]//Proc. IEEE/ACM 44th International Conference on Software Engi⁃
neering (ICSE). IEEE, 2022: 2315–2326. DOI: 10.1145/3510003.3510086

Biographies
MA Qianli (maqianli@foxmail. com) received his BE degree in software engi⁃
neering from University of Electronic Science and Technology of China in 2020.
He is currently working toward his ME degree in electronic information engi⁃
neering from Shenzhen University, China. His research focuses on blockchain.

ZHANG Shengli received his BE degree in electronic engineering and ME de⁃
gree in communication and information engineering from University of Science
and Technology of China in 2002 and 2005, respectively, and PhD degree with
the Department of Information Engineering, The Chinese University of Hong
Kong, China in 2008. After that, he joined Communication Engineering Depart⁃
ment, Shenzhen University, China, where he is currently a full professor. He
has authored or coauthored more than 20 IEEE top journal papers and ACM top
conference papers, including IEEE Journal on Selected Areas in Communica⁃
tions, IEEE Transactions on Wireless Communications, IEEE Transactions on
Mobile Computing, IEEE Transactions on Communications, and ACM Mobicom.
His research interests include blockchain, physical layer network coding, and
wireless networks.

WANG Taotao received his PhD degree in information engineering from The
Chinese University of Hong Kong (CUHK), China in 2015, MS degree in infor⁃
mation and signal processing from Beijing University of Posts and Telecommu⁃
nications, China in 2011, and BS degree in electrical engineering from Universi⁃
ty of Electronic Science and Technology of China in 2008. He joined the Col⁃
lege of Information Engineering, Shenzhen University, China, as a tenure-track
assistant professor in 2016 and was promoted as a tenured associate professor
in 2021.

YANG Qing received his BE degree (Hons.) from Huazhong University of Sci⁃
ence and Technology, China and PhD degree from The Chinese University of
Hong Kong, China. In 2018, he joined as an assistant professor at the College of
Electronics and Information Engineering, Shenzhen University, China and the
Principal Researcher at the Blockchain Technology Research Center, Shenzhen
University.

WANG Jigang received his PhD degree in computer science from Harbin En⁃
gineering University, China in 2007. From May 2007 to June 2009, he held a
postdoctoral position in Institute of Computer Science, Tsinghua University.
From August 2009, Dr. WANG has been with Cyber Security Product Line,
ZTE Corporation as general manager. His recent research interests include op⁃
erating systems, network and information security, and artificial intelligence.

29

