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Abstract: With the maturation and advancement of blockchain technology, a novel execute-order-validate (EOV) architecture has been pro⁃
posed, allowing transactions to be executed in parallel during the execution phase. However, parallel execution may lead to multi-version con⁃
currency control (MVCC) conflicts during the validation phase, resulting in transaction invalidation. Based on different causes, we categorize 
conflicts in the EOV blockchain into two types: within-block conflicts and cross-block conflicts, and propose an optimization solution called 
FabricMan based on Fabric v2.4. For within-block conflicts, a reordering algorithm is designed to improve the transaction success rate and 
parallel validation is implemented based on the transaction conflict graph. We also merge transfer transactions to prevent triggering multiple 
version checks. For cross-block conflicts, a cache-based version validation mechanism is implemented to detect and terminate invalid trans⁃
actions in advance. Experimental comparisons are conducted between FabricMan and two other systems, Fabric and Fabric++. The results 
show that FabricMan outperforms the other two systems in terms of throughput, transaction abort rate, algorithm execution time, and other ex⁃
perimental metrics.
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1 Introduction

Blockchain is essentially a form of distributed ledger 
technology, and the popularity of blockchain technology 
began with the emergence of Bitcoin[1] . The true reason 
for this popularity is that blockchain enables peer-to-

peer transactions without the need for a trusted third party. With 
the advent of smart contracts in Ethereum[2], blockchain technol⁃
ogy has been extensively researched and applied in various 
fields such as finance[3], healthcare[4–5], supply chain[6], and the 
Internet of Things[7], leveraging its characteristics of decentral⁃
ization, immutability, and traceability.

From the perspective of participants, blockchain systems can 
be divided into permissioned chains and permissionless chains. 
Permissionless chains, also known as public chains, allow any 
node to anonymously participate. Due to the unknown identities 
of the nodes and mutual distrust, such blockchain systems often 
use proof of work or other consensus mechanisms to solve the 
Byzantine fault tolerance consensus problem[8]. On the other 
hand, permissioned chains consist of a group of identity-verified 

nodes. These systems are often only applied to specific sce⁃
narios where the nodes, although not entirely trusting each 
other, share common goals. Permissioned chains constrain par⁃
ticipating nodes and can control the read and write permissions 
of different nodes, making them more suitable for enterprise-
level applications.

However, whether they are permissionless chains like Bitcoin 
and Ethereum, or permissioned chains like Tendermint and 
Quorum, most mainstream blockchain systems use active repli⁃
cation[9]: First, transactions are sorted through consensus proto⁃
cols or atomic broadcast and packaged into blocks for dissemi⁃
nation to nodes; then all nodes execute transactions in se⁃
quence, changing their ledger states. We call this system the 
order-execute (OE) architecture, and its limitation lies in the 
fact that all nodes must execute all transactions serially in or⁃
der, which is undoubtedly a limitation on throughput. In order to 
achieve better parallelism in transaction execution, a new 
execute-order-validate (EOV) architecture has been proposed. 
In an EOV system, clients send transaction proposals to mul⁃
tiple nodes for endorsement during the execution phase. The en⁃
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dorsers are only a subset of the nodes in the blockchain net⁃
work, and different endorsers can endorse different transactions 
at the same time, enabling the system to execute transactions in 
parallel. After collecting a sufficient number of endorsements, 
the client packages all response into a transaction and send it to 
orderers for block creation. Finally, the orderers send the blocks 
to all the nodes for validation and synchronization of ledger 
states. This model utilizes optimistic concurrency control tech⁃
niques to ensure the consistency of data. However, it may lead 
to multi-version concurrency control (MVCC)[10] conflicts during 
the validation phase.

We categorize conflicts in EOV systems into two types: 
within-block conflicts and cross-block conflicts. Within-block 
conflicts occur within the same block, where the write set modi⁃
fications of transactions alter the version numbers of read sets 
for later-executed transactions, resulting in the invalidation of 
the latter transactions during the validation phase. Cross-block 
conflicts occur when the value read by a transaction during the 
execution phase is invalidated before reaching the validation 
phase due to modifications made by the submission of other 
blocks. SHARMA et al.[11] proposed a system called Fabric++ to 
address within-block conflicts by reordering transactions. How⁃
ever, our testing showed that Fabric++ is inefficient when the 
transaction conflict rate is high. To address this issue, we made 
several optimizations to the EOV blockchain based on Fabric 
v2.4, naming FabricMan. The main contributions of this paper 
are as follows:

1) We design a reordering algorithm with stable time com⁃
plexity to reduce within-block conflicts. Experimental results 
show that our algorithm performs better under high transaction 
conflict rates compared with Fabric++.

2) Based on the transaction conflict graph generated during 
reordering, we perform parallel validation of unrelated transac⁃
tions in the validation phase to leverage the advantages of multi-
core CPUs.

3) At the chaincode level, we analyze transactions and merge 
simple transfer transactions to maximize the validation pass rate.

4) We implement a cache-based version validation mecha⁃
nism to detect and terminate invalid transactions during the or⁃
dering phase, reducing cross-block conflicts.

The rest of the paper is organized as follows: Section 2 intro⁃
duces the structures of Fabric and Fabric++, as well as other re⁃
lated research. Section 3 provides a theoretical analysis of the 
problems in Fabric and proposes our findings. Section 4 de⁃
scribes the design of FabricMan. Section 5 presents experimen⁃
tal tests of FabricMan’s optimizations and compares them with 
Fabric and Fabric++. Finally, Section 6 concludes our work.
2 Background and Related Work

2.1 EOV Architecture in Hyperledger Fabric
One of the representative blockchain platforms based on the 

EOV architecture is Hyperledger Fabric[12], abbreviated as Fab⁃

ric. All nodes in Fabric are known and authorized at all times 
and are mainly divided into three types: 1) Clients are respon⁃
sible for submitting transaction proposals and collecting en⁃
dorsement responses; 2) peers are responsible for executing and 
validating transaction proposals, and then committing their write 
sets to maintaining local ledgers; 3) orderers are responsible for 
ordering transactions and packaging them into blocks according 
to predefined rules. The workflow of a transaction consists of 
three phases: execution, ordering, and validation.

1) Execution phase
During the execution phase, clients send the transaction pro⁃

posal to a subset of peers (endorsers), according to a predefined 
policy. Endorsers simulate the execution of transactions in par⁃
allel based on the current ledger state, generating the corre⁃
sponding read and write sets. The read set consists of (key, ver) 
tuples, and the write set consists of (key, val) tuples, where key 
is a unique name representing the entry, and ver and val are 
the latest version number and value of the entity, respectively. 
After execution, endorsers return the read and write set with 
their signatures to the client. When a client collects sufficient 
responses from different endorsers, it can package them into a 
transaction and send them to the ordering service to enter the 
next phase.

2) Ordering phase
During the ordering phase, different orderers continuously re⁃

ceive transactions from different clients. The ordering service 
needs to achieve two goals: a) reaching a consensus on transac⁃
tion orders, and b) packaging ordered transactions into blocks 
according to rules and delivering them to all peers. In Fabric 
v2.4, the Raft protocol is used for achieving crash-fault-tolerant 
consensus in a). The block creation rules in b) are generally 
formed by the maximum block interval and the maximum num⁃
ber of transactions included in a block.

3) Validation phase
When a node receives a block from the orderers, it first 

checks for the presence of signatures and the legality of the 
block structure. If the check passes, the block is added to a vali⁃
dation queue to ensure it can be added to the blockchain. Then, 
it goes through the validating state-based endorsement check 
(VSCC) and MVCC validation stages. In the VSCC stage, the 
node checks if each transaction in the block meets the specific 
endorsement policy of the chaincode; if not, the transaction is 
marked as invalid but remains in the block. In the MVCC stage, 
all transactions are sequentially checked for multi-version con⁃
currency control. If the version number of a key in the transac⁃
tion’s read set does not match the version number in the cur⁃
rent local state, the transaction is marked as invalid. Finally, the 
node writes the block into its local ledger and modifies the led⁃
ger state according to the validity of each transaction.
2.2 Optimization of Fabric++

The vanilla Fabric sorts transactions based on the order in 
which they arrive at the orderers. While this approach allows for 
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quick ordering, it may lead to unnecessary serialization con⁃
flicts. To address the aforementioned issue, SHARMA et al. [11] 
introduced a reordering algorithm in the ordering phase of Fab⁃
ric. This algorithm terminates a small number of transactions 
based on the relationship between the read and write sets of 
transactions. Subsequently, it constructs a conflict-free ordering 
for the remaining transactions, thereby increasing the success 
rate of transactions within a block. The algorithm consists of five 
main steps as follows. 1) A conflict graph is built based on the 
read and write sets of all transactions to be sorted. 2) Tarjan’s 
algorithm[13] is used to identify all strongly connected subgraphs 
and Johnson’s algorithm[14] to identify all cycles within these 
subgraphs. 3) The cycles each transaction is part of are ideni⁃
fied, and the times of each transaction appearing in the cycles 
are counted. 4) The transactions that appear in the most cycles 
are sequentially terminated until the conflict graph has no 
cycles. 5) Finally, a serializable scheduling scheme is estab⁃
lished using the remaining transactions.
2.3 Related Work

Currently, optimizations for the EOV blockchain can be 
broadly categorized into two types:

1) Improving the overall throughput of the system
THAKKAR et al. [15] conducted comprehensive tests on the 

performance of Fabric v1.0 by configuring parameters such as 
the block size (BS), endorsement policy, channel, resource al⁃
location, and ledger database. They identified three main per⁃
formance bottlenecks: endorsement policy validation, valida⁃
tion of the order of transactions in a block, and validation and 
submission of states in CouchDB. They proposed simple opti⁃
mizations to address the following issues: a) using a hash map 
with serialized identities as keys to cache deserialized identi⁃
ties, reducing resource consumption for encryption opera⁃
tions; b) parallel validation of endorsements for multiple 
transactions to utilize idle CPU resources and improve overall 
performance; c) batch read and write optimization for 
CouchDB. These optimizations effectively increase the overall 
throughput of the system. GORENFLO et al. [16] reengineered 
Hyperledger Fabric v1.2 by a) passing only transaction IDs 
instead of entire transactions during ordering, b) actively 
caching unassembled blocks in committers, parallelizing as 
many verification steps as possible, c) redesigning the data 
management layer using an in-memory database instead of 
the original data storage, and d) separating roles responsible 
for endorsement and submission. These changes reduce com⁃
putational and I/O overhead during transaction ordering and 
validation, increasing transaction throughput from 3 000 
transactions per second (TPS) to 20 000 TPS.

2) Reducing read/write conflicts caused by parallel execution
RUAN et al. [17] studied the Fabric++ solution and found that 

it did not consider dependencies between transactions across 
blocks, limiting the effectiveness of reordering. They proposed a 
reordering algorithm based on a more granular concurrency con⁃

trol strategy and verified its safety, resulting in improved reor⁃
dering effectiveness. SUN et al.[18] analyzed the reordering algo⁃
rithm implemented in Fabric++ and found issues regarding 
trust. They proposed a trusted reordering algorithm grounded in 
a greedy approach.
3 Problem Analysis

As mentioned in Section 2, Fabric generates read and write 
sets for transactions while execution. During the validation 
phase, nodes perform MVCC validation on the read sets based 
on the current state of the local database. If the versions do not 
match, the transaction is marked as invalid, and its write set 
cannot be used to update the ledger state, resulting in an MVCC 
conflict. To assess the impact of these conflicts on the system, 
we conducted tests on Fabric using the SmallBank smart con⁃
tract under the configuration described in Section 5, as shown in 
Fig. 1.

In our experiments, each block contains 256 transactions. 
When the total number of accounts is 3 000, the conflict rate is 
relatively low, resulting in a high TPS for successful transac⁃
tions, accounting for approximately 90%. However, as the num⁃
ber of accounts decreases, the conflict rate within blocks in⁃
creases, resulting in a higher rate of transaction abortions. 
When the total number of accounts is 500, the TPS for success⁃
ful transactions drops to only 30%. This demonstrates a signifi⁃
cant performance decrease when the number of transaction con⁃
flicts within blocks increases.

In high-concurrency execution environments, we classify 
MVCC conflicts in the EOV blockchain into within-block and 
cross-block conflicts.
3.1 Within-Block Conflicts

Within-block conflicts occur when there are conflicts be⁃
tween different transactions within the same block. When mul⁃

▲Figure 1. Transaction throughput of Fabric
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tiple transactions that read or write the same key are grouped 
into the same block, it may lead to this type of conflict. In the 
example provided in Table 1, transactions T1 and T2 are sequen⁃
tially packaged into a single block. During the validation phase, 
T1 updates key k1, changing its version number to v1. Next, T2 is 
validated, and its read set includes key k1 with version v0. Dur⁃
ing the MVCC validation, it is discovered that v0 ≠ v1, resulting 
in T2 being marked as invalid.

Observation 1: It is possible to reduce the number of conflicts 
within a block by modifying the validation order of transactions. 
The fundamental reason for within-block conflicts is that two dif⁃
ferent transactions perform a write-followed-by-read operation 
on the same key. By adjusting the order of transactions, we can 
ensure that they perform read operations before write opera⁃
tions. In the given example, if T2 is validated before T1, there 
would be no conflict.

As mentioned in Section 2.2, Fabric++ uses Johnson’s algo⁃
rithm during reordering, with a time complexity of O ( (n +
e ) (c + 1) ), where n is the number of nodes, e is the number of 
edges, and c is the number of cycles in the graph. While the 
number of nodes and edges in the conflict graph can be con⁃
trolled to small values, the number of cycles may be very large. 
Ref. [19] highlighted a similar issue: when resolving cycles in 
Fabric++ , recalculating the occurrence count of individual 
transactions in a cycle results in a time complexity of O (n3 ) for 
the entire algorithm. Considering that topological sorting is an 
algorithm for ordering graph vertices with a stable time complex⁃
ity of O (n + e ), we can propose a new reordering algorithm 
based on it. This algorithm can rapidly complete reordering 
even when transaction conflict rates are high.

Observation 2: The conflict graph generated by reordering 
can reflect dependency information between transactions, which 
can be utilized for parallel validation. In the Fabric, validation 
can be divided into two main stages: VSCC and MVCC. VSCC 
is used to evaluate whether endorsements in transactions com⁃
ply with the endorsement policy, and this step is already paral⁃
lelized in the system. MVCC, on the other hand, is executed se⁃
quentially. Ref. [15] pointed out that one of the performance 
bottlenecks of Fabric is the serial MVCC validation of all trans⁃
actions within a block. If we parallelize the validation of unre⁃
lated transactions by leveraging transaction dependency rela⁃
tionships, we can fully harness the advantages of multi-core 
CPUs to enhance system performance.

Observation 3: Transfers are one of the primary transaction 
types, characterized by simple logic and fixed parameters, ren⁃
dering them suitable for merging. As a permissioned block⁃
chain, obtaining block data from Fabric is challenging. Ref. [20] 
analyzed transactions on Ethereum over a period of time and 
found that the main types of transactions leading to conflicts are 
ERC20 token transactions accounting for 60%, decentralized fi⁃
nance (DeFi) transactions accounting for 29%, and gaming 
transactions accounting for 10%. Therefore, we believe that the 
merging of transfer transactions holds significance.

3.2 Cross-Block Conflicts
Due to the nature of the EOV structure, there is a certain de⁃

lay between the execution and verification. If a transaction in a 
later block reads a key that was written by a transaction in an 
earlier block before the earlier block’s verification, it can result 
in a dirty read in the later block, leading to a conflict. As shown 
in Fig. 2, T1 and T2 are two transactions in different blocks. Dur⁃
ing the execution phase, T1 reads the current version number v0 of key k1. From the verification phase, it can be seen that T1 modifies key k1 in its write set, but since this step is a simulated 
execution, the database state is not altered. Therefore, T2 still 
reads version v0 of k1. Subsequently, the block containing T1 en⁃
ters the verification phase and updates the version number of 
key k1 to v1, resulting in T2 invalidated. Additionally, under spe⁃
cial circumstances such as network congestion, cross-block con⁃
flicts can also occur.

Observation 4: Orderers have the opportunity to early abort 
invalid transactions caused by cross-block conflicts. All transac⁃
tions arrive at the orderer for block generation. Since the version 
numbers of keys in the read sets are obtained from the ledger 
during execution, the version of a key in the ledger at this point 
must be no lower than the version in the read set. We can utilize 
a caching mechanism to store versions of keys, thereby filtering 
out invalid transactions.
4 Design of FabricMan

In the previous section, we have analyzed two types of con⁃
flicts in the EOV blockchain and identified four directions for 
optimization. In this section, we will first introduce our modifica⁃
tions to the ordering phase and then discuss the four modular 
designs for each direction: transaction reordering, parallel verifi⁃
cation, transaction merging, and caching mechanism.

▼Table 1. An example of within-block conflict
Order

1
2

Transaction
T1
T2

Read Set
-

(k1, v0), (k2, v0)

Write Set
(k1, v0→v1)
(k2, v0→v1)

Validity
Valid

Invalid

▲Figure 2. An example of cross-block conflict
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Our optimization efforts primarily focus on the ordering 
phase. The orderer receives transactions from multiple clients 
and merges them into a batch until the conditions for block gen⁃
eration are fulfilled. The conditions consist of two parts: When 
the number of transactions in the batch reaches a predefined 
threshold, and then when the time taken to construct the batch 
reaches the maximum block generation time limit.

Once either condition is met, our system starts processing the 
batch. All transactions are first filtered through a version cache 
maintained by the orderers. During this process, the system ex⁃
tracts the read sets of transactions and compares them with the 
cache. Transactions that do not meet the filtering criteria are 
aborted and feedbacks are provided to the clients. Transactions 
are then checked to determine if they are transfer transactions. 
If so, they are moved to the transfer array and merged with other 
transfer transactions. The remaining transactions in the batch 
are non-transfer transactions that undergo reordering and subdi⁃
vision into subgraphs based on dependency relationships. Fi⁃
nally, the system constructs a new block by incorporating 
merger transactions, transfer transactions, and the reordered 
batch. It then adds the transaction subgraphs to the block 
header and distributes the block to all peers.
4.1 Transaction Reordering

When reordering a transaction set S, it is necessary to iden⁃
tify the dependencies between the transactions to construct a 
transaction conflict graph. In the graph, if a transaction Ti points 
to another transaction Tj, it means that the write set of Ti inter⁃
sects with the read set of Tj, denoted as Ti → Tj. This indicates 
that during block ordering, Tj needs to precede Ti, otherwise Tj will be invalidated due to reading outdated versions. When con⁃
structing the conflict graph, each node represents a transaction. 
According to the aforementioned definition, the out-degree of a 
node indicates the number of other transactions whose validity it 
affects, while the in-degree indicates the number of other trans⁃
actions that affect it. Additionally, an important issue to address 
is the presence of cycles in the graph. Circular graphs cannot be 
serialized, thus necessitating the use of algorithms to remove 
certain transactions and convert the original conflict graph into 
an acyclic graph.

Our algorithm is based on topological sorting, but due to the 
unsuitability of topological sorting for cyclic graphs, we make 
some improvements. From a high-level perspective, it mainly 
consists of five steps as follows. 1) The conflict graph is con⁃
structed based on the read-write sets of each transaction in S, 
and the in-degree and out-degree of each node are recorded. 2) 
A node n with the minimum in-degree is selected for process⁃
ing. If multiple nodes meet this criterion, the one with the maxi⁃
mum out-degree is prioritized. If there are still multiple options, 
the one with the smallest index is chosen. 3) Other nodes point⁃
ing to n from the graph are removed until the in-degree of n is 0. 
4) N is added to the result queue and removed from the graph. 
5) Steps 2), 3), and 4) are repeated until there are no remaining 

nodes in the conflict graph. Finally, the result queue is reversed 
to obtain a conflict-free serialized ordering. The pseudo-code of 
Algorithm 1 implements these five steps.

Note that in Step 2), since we need to reduce the in-degree 
of n to 0, we prioritize selecting the node with the minimum in-
degree to retain more transactions. Furthermore, since the out-
degree of a node indicates the number of transactions it will af⁃
fect after ordering, and the final ordering is the reverse of the 
ordering queue, i.e., transactions that enter the ordering queue 
first will be placed at later positions in the algorithm, we pri⁃
oritize selecting transactions with the maximum out-degree for 
ordering.
Algorithm 1. Reordering algorithm
1.  func ReorderSort(Transaction[ ] S) {
2.    // Step 1: Construct a transaction conflict graph and 
an exit and entry table
3.    Graph cg = buildConflictGraph(S)
4.    Graph incg = invert cg
5.    map[Transaction]int indegree = Calculate in-degrees 
using cg
6.    map[Transaction]int outdegree = Calculate out-de⁃
grees using cg
7.    // Step 2: Select nodes to be sorted
8.    while S is not empty:
9.      for each Transaction tx in S:
10.        if indegree[tx] < minIndegree:
11.          min = indegree[tx]
12.          nodeToSort = node
13.        else if indegree[tx] == min and outdegree
[tx] > outdegree[nodeToSort]:
14.          nodeToSort = node
15.      // Step 3: Process nodeToSort so that their degree 
is 0
16.      for each nodeToRemove in incg[nodeToSort]:
17.        if nodeToRemove not in S:
18.          continue
19.        remove nodeToRemove from S
20.        for each tx in cg[nodeToRemove]:
21.          indegree[tx]--
22.        for each tx in incg[nodeToRemove]:
23.          outdegree[tx]--
24.      // Step 4: Add nodeToSort to the queue and re⁃
move from transaction graph
25.      append nodeToSort to result
26.      for each tx in cg[nodeToSort]:
27.        indegree[tx]--
28.      remove nodeToSort from S
29.    // Step 5: Return the reverse order of the ordering 
queue to obtain the ordering result
30.    return result.invert()
31.  }

Here is an example to better understand the algorithm. We 
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assume there are six transactions, T0 to T5, within a set S, and 
their read-write sets are as shown in Table 2. These six transac⁃
tions access 10 different keys, k0 to k9, and 0 indicates that a 
transaction’s read or write set does not contain a certain key, 
while 1 indicates that it does. The reordering process is as fol⁃
lows:

1) The first step is constructing a conflict graph for transac⁃
tions in S based on the read-write sets, as shown in Fig. 3. If Ti points to Tj, it indicates that the write set of Ti shares common 
keys with the read set of Tj. At this point, the in-degree and out-
degree of each node are shown in Table 3.

2) In the first iteration, following step 2, the system selects T5 as n because it currently has the smallest in-degree among the 
transactions in S. As the in-degree of T5 is 0, Step 3 is skipped. 
Next, the system adds T5 to the result, removes it from S, and 
then decrements the in-degree of the node pointed to by T5, which is T2.3) In the second iteration, since T0, T2 and T4 all have an in-
degree of 1, making them the nodes with the lowest in-degree, 
the system selects T4 as n based on Step 2. Then, in Step 3, the 
system removes the node T2 from S, reducing the in-degree of T4 to 0. In Step 4, T4 is added to the result and removed from S, 
and then the in-degrees of T1 and T3 are each decreased by one.

4) At this point, there remains a cycle consisting of T0, T1 and T3 in the graph. Since their in-degree and out-degree are 
the same, the system chooses T0 with the smallest index as n. It 
removes T1, adds T0 to the result, and then adds T3 to the result. 
Reversing the result queue, we can get the final sorted result: 
T3 - T0 - T4 - T5.The central part of this reordering algorithm exhibits a time 
complexity comparable to that of topological sorting, which is 
O (n + e ). Moreover, it is not affected by the number of cycles 
in the graph, eliminating this flaw presented in the Fabric++. It 
is worth noting that our algorithm does not guarantee the termi⁃

nation of the minimum number of transactions to make the 
graph acyclic, as this is an NP-hard problem. We merely pro⁃
vide a very lightweight way to terminate a small number of trans⁃
actions, thereby generating a serializable ordering scheme.

Another point that needs to be clarified is that the reordering 
algorithm proposed by RUAN et al.[17] resembles a greedy strat⁃
egy. The system constructs a conflict graph for all pending trans⁃
actions. When a new transaction is received, its dependencies 
are added to the conflict graph. If a cycle is detected, the new 
transaction is directly dropped, ensuring that transactions in the 
pending queue do not have circular dependencies. In contrast, 
Fabric++ and our algorithm are more modular. We construct a 
conflict graph for all the transactions within a block and then 
eliminate cycles, ultimately achieving a serializable ordering.
4.2 Parallel Verification

When conducting reordering, the algorithm generates a con⁃
flict graph among transactions, as indicated by lines 3 and 4 in 
Algorithm 1. Here, cg represents the conflict graph, depicted by 
a two-dimensional array. Each element cg[i] is a one-
dimensional array, where the presence of an element j indicates 
that transaction Tj must occur before transaction Ti, namely 
Ti → Tj.After reordering, the aborted transactions are removed from 
the conflict graph. The system then performs a depth-first 
search (DFS) operation on cg to identify their connected compo⁃
nents and further partition them into mutually disconnected sub⁃
graphs. When the block is generated, the information regarding 
these subgraphs will be serialized and appended to the block 
header. During the validation phase, nodes deserialize the infor⁃

▼Table 3. Initial in-degree and out-degree of the six transactions
Transaction

T0
T1
T2
T3
T4
T5

In-Degree
1
3
2
2
1
0

Out-Degree
1
1
2
1
3
1

▼Table 2. Read and write sets of the six transactions
Read Set

Tx

T0
T1
T2
T3
T4
T5

Wirte Set
Tx

T0
T1
T2
T3
T4
T5

k0
1
0
0
0
0
0

k0
0
1
0
0
0
0

k1
0
0
0
1
0
0

k1
0
0
0
1
0
0

k2
0
0
0
1
0
0

k2
1
0
0
0
0
0

k3
0
1
0
0
0
0

k3
0
0
1
0
0
0

k4
0
1
0
0
0
0

k4
0
0
0
1
0
0

k5
0
1
0
0
0
0

k5
0
0
0
0
1
0

k6
0
0
1
0
0
0

k6
0
0
0
0
1
0

k7
0
0
1
0
0
0

k7
0
0
0
0
0
1

k8
0
0
0
1
0
0

k8
0
0
0
0
1
0

k9
0
0
0
0
1
0

k9
0
0
1
0
0
0

▲ Figure 3. Initial conflict graph formed by the six transactions in a 
block

T1 T2

T5

T4T3

T0
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mation and utilize goroutines to perform MVCC validations on 
independent subgraphs in parallel.
4.3 Transaction Merging

During the execution phase, we analyze the parameters of 
chaincode transactions, which allows us to identify simple trans⁃
fer transactions. Additionally, we include a value field in the 
structure of the transaction’s read set to represent its initial 
value.

In the ordering phase, nodes identify transfer transactions un⁃
der different chaincodes and construct a transfer table for each 
chaincode. The node adds the initial balance of each account to 
the Moneymap table and their corresponding version numbers to 
the Versionmap table. If the sender’s balance is less than the 
transfer amount, the transaction is aborted. Otherwise, the 
sender’s balance is decreased by the transfer amount, and the 
receiver’s balance is increased by the same amount. After pro⁃
cessing all transfer transactions, the system utilizes the keys and 
corresponding version numbers in the Versionmap to form the 
read set of the merger transaction. Similarly, it utilizes the keys 
and values in the Moneymap to create the write set of the 
merger transaction.

Once the merger transaction is constructed, it is positioned at 
the start of the block during formation, followed by all the 
merged transfer transactions. Retaining the merged transactions 
in the block serves two purposes: First, it enables the system to 
offer feedback to clients concerning the success or failure of the 
merger transactions during validation; second, it maintains 
transaction data on the blockchain for future auditing purposes.
4.4 Caching Mechanism

To mitigate the cross-block conflicts mentioned in Section 
3.2, we deploy a cache utilizing a hash table at the orderers. 
This cache is employed to store the keys and version numbers 
extracted from the read and write sets of received transactions. 
The cache table consists of three fields: key, version, and up⁃
dated flag. The key represents the unique entity name in the 
smart contract chaincode, while the version indicates the latest 
version number read for the corresponding key in the transac⁃
tion. The updated flag denotes whether the key may have been 
updated by a new block.

Upon the arrival of transactions at the orderer, the read sets 
of each transaction are checked against the cache. If any key is 
found to have a version lower than that in the cache, the transac⁃
tion is immediately aborted. This prevents outdated transactions 
from occupying system resources due to network delays. If a key 
has a version greater than or not present in the cache, the cache 
is updated with the latest version. If a key matches the version 
in the cache, the system checks if it has the updated flag; if so, 
the transaction is aborted.

After the completion of reordering, the orderer obtains a 
block containing transactions with no conflicts. Under normal 
operation, the write sets of this block are applied to update the 

ledger. At this point, the orderer checks the read sets of each 
transaction. If the cache contains keys identical to those in the 
read set, the corresponding values in the cache are marked with 
the updated flag, indicating that the version is no longer the lat⁃
est for that key.

However, there is a potential issue with this cache mecha⁃
nism. If transaction T1 fails to pass the final validation phase for 
some unexpected reason (e.g., a signature issue), the version of 
k1 in the node’s ledger remains v0. However, in the orderer, the 
version of k1 has already been altered to v0 - updated, causing 
subsequent transactions reading k1: v0 to fail. To address this is⁃
sue, we introduce a timer in the cache. If a key is not updated 
within two block intervals, it is removed from the cache. This 
also ensures that the cache does not indefinitely increase in size.
5 Experimental Evaluation

To validate the improvements proposed in this paper, we con⁃
ducted experimental evaluations of key metrics such as through⁃
put, transaction abort rate, and algorithm execution time for Fab⁃
ric, Fabric++, and FabricMan. Since the original Fabric++ code 
is implemented on Fabric v1.2 while FabricMan is based on 
Fabric v2.4, for comparison purposes, we also reimplemented 
Fabric++ based on Fabric v2.4.
5.1 Setup and Workload

The experimental setup involves a single-channel blockchain 
system comprising two organizations, each containing two peer 
nodes deployed via docker containers. The consensus mecha⁃
nism used is Raft, and LevelDB serves as the state database. 
The experiments were conducted on a server with a 36-core 
CPU (Intel Core i9-10980XE 3.0 GHz), 256 GB RAM, running 
on Ubuntu 20.04.5 LTS.

Two types of workloads were employed in the experiments: 
Smallbank and custom chaincode, assessed through the caliper-
benchmarks framework. The Smallbank contract creates a 
checking account and a savings account for each user and in⁃
cludes six functions. In the custom chaincode, we defined com⁃
plex read-write transactions that read the balances of four ac⁃
counts and modify two of them.

In Section 3, Smallbank is used to test Fabric for measuring 
the transaction throughput under different numbers of accounts. 
The transaction conflict rates corresponding to different numbers 
of accounts are shown in Table 4. In subsequent experiments, we 
continued to use these account numbers to measure the system’s 
performance under different transaction conflict rates.
5.2 Impact of Block Size

BS is one of the important factors affecting the throughput 
▼Table 4. Number of accounts and corresponding conflict rates

Number of 
Accounts

Conflict rate/%
3 000
10.5

2 500
14

2 000
20.3

1 500
32.3

1 000
46.4

500
67.8
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and latency of a blockchain. We tested the impact of the transac⁃
tion trigger rate on FabricMan, and the impact of changing the 
block size on the throughput of Fabric, Fabric++, and FabricMan. 
We used the Smallbank contract and tested the performance of 
the systems in a low-conflict environment when the number of ac⁃
counts was set to 3 000. The results are shown in Fig. 4.

It is found that as the transaction trigger rate increases, the 
throughput of FabricMan also gradually increases, reaching 
saturation at around 240 TPS when the transaction trigger rate 
is 512 TPS. As the block size increases from 64 to 256, the sys⁃
tem throughput also increases, but it decreases when the block 
size is set to 512. This is because increasing the number of 
transactions in a block leads to more conflicting transactions, re⁃
ducing the throughput of successful transactions, and larger 
blocks also increase the transmission time in the system.

We can also observe that as the number of transactions in a 
block increases, the difference in throughput of successful trans⁃
actions between FabricMan and Fabric++ compared to Fabric 

becomes larger. This is because as the number of transactions in 
the block increases, the probability of conflicts also increases, 
making the effect of reordering more pronounced. The through⁃
put of all three systems reaches its peak when the block size is 
set to 256. Therefore, in subsequent experiments, we use 256 as 
the number of transactions included in a block, and set the 
maximum block interval to one second, and the transaction trig⁃
ger rate to 512 TPS.
5.3 Comparison of Reordering Algorithms

To evaluate the performance of the reordering algorithms, 
we prepared multiple pre-packaged blocks (each containing 
256 transactions) and applied the reordering algorithms of 
FabricMan and Fabric++ separately. Their execution time, the 
number of valid transactions in each block, and the through⁃
put of valid transactions were compared. In this experiment, 
we used complex read-write transactions from custom chain⁃
code to increase the conflict rate between transactions, aiming 
to better evaluate the performance of both algorithms.

We controlled the number of accounts to gradually decrease 
from 1 500 to 1 000. Fig. 5 shows the time taken by both the 
algorithms and the number of valid transactions within each 
block. It can be observed that the time required by Fabric++ 
for reordering increases significantly as the conflict rate in⁃
creases, and it becomes unable to generate blocks when the 
number of accounts reaches 1 000. In contrast, the algorithm 
of FabricMan remains stable at around 1 500 us. However, 
since FabricMan’s reordering algorithm does not select nodes 
with the most cycles in each round like Fabric++ , the final 
number of successful transactions is slightly lower than that in 
Fabric++. Nevertheless, its stable time complexity allows it to 
generate blocks normally even in high-conflict environments 
with 1 000 or fewer accounts.

The comparison of throughput between the two systems is 
shown in Fig. 6, where FabricMan only uses the optimization 
of the reordering. It can be seen that FabricMan consistently 
outperforms Fabric++ in throughput across different settings 
of the number of accounts. This is because, in the range of 1 
500 to 1 400 accounts, where the conflict rate is relatively 
low, both reordering algorithms yield a comparable number of 
valid transactions within the same block. However, Fabric⁃
Man’s reordering algorithm has shorter execution times. As 
the number of accounts decreases below 1 400, the conflict 
rate increases significantly. While Fabric++’s algorithm can 
produce more valid transactions, the time it takes for execu⁃
tion increases significantly.
5.4 Effect of Parallel Verification

We also tested the impact of assigning different numbers of 
CPU cores to FabricMan on parallel verification time. The ex⁃
tensive use of CPU resources for identity encryption and de⁃
cryption operations in permissioned blockchains could affect 
our experimental results. We used multiple pre-packaged ▲ Figure 4. Impact of transaction trigger rate of FabricMan (up) and 

that of block size of three systems (down)
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blocks and conducted modular tests on MVCC verification 
time with validation nodes having CPU core counts ranging 

from 1 to 16.
The experiments employed the Smallbank contract and var⁃

ied the number of accounts (AC) to represent different conflict 
rates. To ensure verification of the same number of transac⁃
tions at different conflict rates, we only used the subgraph par⁃
titioning algorithm instead of reordering during block genera⁃
tion. The test results, as depicted in Fig. 7, indicate a signifi⁃
cant reduction in verification time with an increase in the 
number of cores used. However, beyond 8 cores, the reduction 
in time becomes less pronounced, as this stage becomes bottle⁃
necked by interactions with the database and the serial verifi⁃
cation of the longest transaction conflict chain. Moreover, as 
the block conflict rate increases, resulting in longer conflict 
chains, the corresponding verification time also increases.
5.5 Effect of Transaction Merging

In this section, we used 1 000 accounts to send non-transfer 
or transfer transactions in the Smallbank contract. Non-
transfer transactions cannot be merged, while transfer transac⁃
tions can. We gradually increased the proportion of transfer 
transactions from 15% to 85%. The proportion of successful 
transactions in the Fabric, Fabric++ , and FabricMan systems 
is shown in Fig. 8.

When the proportion of transfer transactions is low, Fab⁃
ric++ and FabricMan have a higher successful transaction rate 
due to reordering. However, as the proportion of transfer trans⁃
actions increases, the successful transaction rate in Fabric⁃
Man increases because of the transaction merging mechanism. 
When the proportion of transfers reaches 85%, over 90% of 
transactions in FabricMan can be successfully submitted. In 
contrast, as the read-write set of transfers in Smallbank is 
more complex than others, the number of MVCC conflicts in 
Fabric and Fabric++ increases, leading to a decrease in the 
successful transactions rate.
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5.6 Combinations of Optimizations
Finally, we conducted comprehensive performance testing of 

the systems. We used the Smallbank contract as the workload 
and applied all optimizations mentioned in Section 4 to Fabric⁃
Man. We tested the system under different numbers of accounts 
and compared the throughput and transaction abort rate with 
Fabric and Fabric++, as shown in Fig. 9.

The results demonstrate that when the number of accounts is 
3 000 and the transaction abort rate is low, Fabric exhibits the low⁃
est throughput among the three systems, at less than 200 TPS. 
Fabric++, benefiting from reordering, achieves a slightly higher 
throughput of around 215 TPS. In contrast, FabricMan, leverag⁃
ing both reordering and parallel validation along with the merg⁃
ing of transfer transactions, achieves the highest throughput of 
approximately 240 TPS.

As the number of accounts gradually decreases from 3 000 to 
500, resulting in an increasing transaction abort rate, Fabric ex⁃
periences a significant decline in effective transaction through⁃
put, dropping to less than half of its initial level. Meanwhile, 
FabricMan experiences a slower decrease in effective transac⁃
tion throughput, with the lowest transaction abort rate. Even in 
high-concurrency conflict environments, FabricMan can main⁃
tain relatively high throughput.
6 Conclusions and Future Work

We mitigate the performance impact of MVCC conflicts 
arising from concurrent execution in the innovative EOV 
blockchain by introducing a comprehensive blockchain archi⁃
tecture named FabricMan. This architecture addresses both 
within-block and cross-block conflicts while enabling parallel 
validation and transaction merging. Through testing, Fabric⁃
Man has demonstrated superior performance in terms of 
throughput, transaction abort rate, and execution time com⁃
pared to the baseline schemes. However, there are several ar⁃
eas for future improvement in our work. First, the reordering 

of transactions within a block may potentially compromise the 
fairness of the system. In future work, we plan to analyze this 
issue and introduce appropriate parameters into the algorithm 
to address it. Second, our experiments were conducted using 
Docker on a single server, which could not effectively simu⁃
late factors such as communication latency present in real net⁃
works. The problem of cross-block conflicts was not ad⁃
equately addressed, so it was not discussed in the experimen⁃
tal phase. In future work, deploying the system in a multi-
node environment can provide a better understanding of this 
issue and facilitate further discussion.
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